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Abstract: '~~~~~ýA421nvestigationi3oncc wtte
steady-state reaction of a propeller to
velocity perturbations induced by deflected
control surfaces located upstream of the
propeller0o The study was pursued along
boqthhe=ertical and experimental lines.

QTheoretically' actuator disk4 theory is
used, first, to represent the control sur-
faces and introduce a distortion Into the
flow and, secondly, to represent the action
of the propeller when exposed to the distorted
floWv The problem Is reduced to a boundary
value problem by linearizing the equations of
motion and the continuity equation and then
solved by proper choice of boundary and
matching conditions at the actuator discs.

The experimental results show that the
maximum reaqive force of the propeller Is
about 34 pe. Cont of the control surface force.
This maximum occurs for a lO-bladed propeller
with lesser percentages occurring for propellers
of 2 and 5 blades. Practically no variation
with advance ratio and spacing distance was
measured.

The conclusio is made that, although
further work is ne~ded-lartlJularly with re-
gard to computational accuracy,-he theoretical
method i... a .eabl mem wi... can easily be
extended to the case of a ducted rotating device.,



ii

ACKNOWLODGMENTS

The author wishes to express his sincere appreciation

for the guidance of his advisor, Dr. H. Yeh, particularly

in the theoretical development of the study. Special

thanks is also expressed to the chairman of his

committee, Dr. G. F. Wislicenus, for his overall

guidance and instructive comments.

The investigation was performed at the Garfield

Thomas Water Tunnel of the Ordnance Research Laboratory

under U. S. Navy Contract NOrd 16597. Appreciation is

offered to members of the laboratory who contributed in

many ways. Particular thanks go to S. M. Laposata who

gave invaluable assistance in programming the computations;

to G. B. Gurney for his assistance in the experipental

instrumentation; and to H. D. Cannon, R. F. Davis,

J. K. Long, W. S. Gearhart, and M. W. McBride and his

tunnel crew for their individual contributions to the

success of the experimental program.



liii

SUMMARY

Statement of the Problem

The purpose of this investigation is, in general,

to determine the steady-state reaction of a propeller

to velocity perturbations induced by deflected control

surfaces located upstream of the propeller. A propeller

operating in such a distorted flow will tend to

straighten the flow, thus producing forces that are

opposite to those induced by the control surfaces. The

effectiveness of the control surfaces is therefore

reduced.

Origin of the Problem

Theoretically, the investigation belongs to a

class of problems characterized as flow distortion

problems. Most of the steady-state investigations of

this class have their origin in the axial flow compressor

field. Here the principal interest is in predicting

the flow leaving a blade row.

Two distinct types of distortion, radial 5 and

circumferential 6 have been treated. A combination of

both these types was investigated with reference to a

plane cascade of airfoils 7 . There was consequently a

need for a three-dimensional analysis of radially and

circumferentially distorted flows in cylindrical
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coordinates. This need, combined with the practical

problem of propeller reaction to control surface

deflections, forms the basis for this investigation.

Procedure of the Investigation

The investigation was pursued along both theoretical

and experimental lines. Theoretically, actuator disc

theory is used, first, to represent the control surfaces

and introduce a distortion into the flow and, secondly,

to represent the action of a propeller when exposed to

a distorted flow. The distorted flow investigated is

that produced by two control surfaces, vertically

oriented 180 degrees apart, deflecting the flow in the

same sideward direction.

The appaoach that in general is followed is to

linearize the equations of motion and the continuity

equation and combine them to produce a single differential

equation for the pressure perturbation. By assuming a

series solution for this equation, expressions for the

velocity perturbations are derived which can be

evaluated by proper choice of boundary and matching

conditions at the actuator discs. The perturbations

that are still present in the flow downstream of the

propeller disc are a measure of the reaction of the

propeller to the distorted inflow. The prediction of
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the velocity perturbations just upstream and just down-

stream of the propeller disc permits the estimation of

the force reaction to the distorted inflow.

The experimental part of the investigation was

divided into two phases. The first phase was devoted

purely to the measurement of the distortion induced by

the deflected control surfaces. This was accomplished

with a three-dimensional, pitot type >robe. The second

phase was concerned with the measurement of the

propeller reaction to the flow distortions. These

measurements included velocity surveys downstream of

the propeller and force measurements of the control

surfaces and propeller.

In both the theoretical and experimental phases

account was taken of the propeller reaction to variations

in propeller advance ratio, spacing distance between

control surfaces and propeller, and numbers of

propeller blades.

Results

The distribution of velocity perturbations measured

immediately downstream of the propeller shows that the

general shape of the original disturbance is maintained.

The magnitude is less and as such is a measure of the

reaction of the propeller.
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The force measurements show that the maximum

reactive side force of the propeller is about 34 per cent

of the control surface force. This maximum occurs for

a 10-bladed propeller. Lesser percentages occur for

propellers of 2 and 5 blades. Practically no variation

with advance ratio or spacing distance was measured.

The theoretical representation of the velocity

perturbations by series was generally good. One

exception occurred with the radial component of velocity

perturbation downstream of the control surface. A

vortex trailing from each control surface tip occurs in

this region. The predicted values were considerably

larger than those measured. An explanation for this

lies in the difference between a real flow vortex with

viscous effects and a potential vortex represented only

approximately by a truncated series.

There is an indication, by virtue of the prediction

of velocity perturbations in the vicinity of the propeller

disc and of the resulting predicted side-force, that the

action of the propeller is either not properly represented

or that the series representing this action were not

carried to a sufficiently large number of terms.

Nevertheless, the force prediction for the 5-bladed

propeller with comparatively close spacing between

propeller and control surfaces was good. The predicted
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gradient of propeller side-force with number of blades,

however, was larger than that measured.

There was a breakdown of the velocity perturbation

predictions for larger spacings. This was traceable

to an accuracy problem in the computations that occurred

with large exponential values. The major portion of

this problem was corrected by simplifying certain

equations. Enough inaccuracy still exists, however,

to make the predictions for larger spacings generally

unreliable.

Conclusions

In the light of the results of the investigation,

the following conclusions can be made;

1. The experimental results give a very good

picture of the force cancellation by the

propeller.

2. The theoretical method that was developed

appears to be a useable one.

3. The theory is being extended to its limits

when applied to a case with a strong vortex

present.

4. The theoretical approach can probably be

extended easily to the case of a ducted

rotating device.
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5. The agreement of theory with experiment is

sufficiently good to warrant further studies

concerned chiefly with improving the accuracy

of predictions.

Suggestions for Further Research

The following suggestions are made with regard to

future work in this general area:

1. Extension of work with the existing experimental

setup to cover other practical configurations

should be attempted.

2. Ways to improve the computing accuracy of a

study such as this should be undertaken.

3. An extension of the theory to the case of

control surfaces and propellers immersed in

the boundary layer of a body should be pursued.

4. An extension of this theoretical approach to

pumps and compressors should be tried.
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CHAPTZER I

INTRODUCTION

Origin of the Problem

The design of a propeller, compressor blade row, or

similar axial flow turbomachinery device is normally based,

of necessity, upon the assumption of a steady, axisymmetric

inflow. A possible exception to this statement occurs in

the design of such items as helicopter rotors where the

use of cyclic pitch variation of the blades is employed to

compensate for the circumferential variations in the inflow.

In reality, there are many cases in turbomachinery

where radially and circumferentially varying distortions

or perturbations to the originally assumed inflow velocity

exist. Interest in distorted flows of this type may be

divided roughly into two classes. The first is character-

ized as the steady-state reaction of a blade row to a

distorted inflow. In this class of problems one generally

would be interested either in the reactive force of the

blade row caused by the distortion or in the flow that

leaves the blade row. The other class of problems is that

associated with the unsteady fluid dynamic reactions to

distorted inflows.

To a great extent, the unsteady analyses have dealt

with the application of non-stationary airfoil theory to
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two-dimensional shapes passing through a sinusoidal gust
1 2

or a viscous wake 2 . Of interest here has been the

fluctuating forces and moments on a two-dimensional

airfoil resulting from such disturbances in the flow.

The calculations of the forces and moments are then

applied to the determination of the amplitude of torsional

oscillations of blades.

Extension of this work was performed by Meyer3 in

which he determined the time-dependent pressure gradient

and velocity on two-dimensional blades of a blade row

passing through the viscous wakes of a preceding stage.

A further extension of this work was reported by Yeh and

Eisenhuth 4 in which the transient effects were reduced to

a quasi-steady analysis involving an equivalent angle of

attack of a blade section.

In the strictly steady-state studies, two basic types

of distortion - radial 5 (axisymmetric) and circumferential 6

(periodic in the peripheral direction) have been examined.

Yeh7 reported on a study in which he treated on the basis

of classical actuator disc approximation, the flow behind

a rotor (or stator) blade row due to an arbitrary inlet

distortion along both circumferential and spanwise

directions. He showed that, in general, the spanwise and

the circumferential distortion waves interact, so that the

combined influence is not the sum of the influence of the
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two simple types of distortions. Yeh's analysis assumed a

plane cascade. A need for a three-dimensional analysis of

distorted flows in cylindrical coordinates therefore still

exists. Methods of handling the three-dimensional aspects

of flow in turbomachinery are available8 ' 9, 10 The

application of these to the problem of distorted inflows,

however, has not been attempted.

The need for an analysis of flow distortions in

cylindrical coordinates is particularly strong in terms

of propellers. A specific type of distortion occurs

with propellers in the propulsion of underwater bodies.

Often it is necessary in the design of underwater bodies

to place control surfaces immediately upstream of the

propeller. The deflected flow produced by the control

surfaces, when actuated, constitutes a flow distortion

that is partly carried through the propeller. The

propeller tends to straighten the deflected flow, thus

reducing the effectiveness of the control surfaces.

Combined with the need for a study of flow distortions

in cylindrical coordinates, the practical problem posed

by the interaction between control surfaces and propellers

on underwater bodies forms the basis for this investigation.

Statement of the Problem and Its Limitations

The purpose of this investigation is, in general, to

determine the steady-state reaction of a propeller to
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velocity perturbations induced by deflected control sur-

faces located upstream of the propeller. This is to be

accomplished by a theoretical development which will

permit the prediction of the velocity perturbations

throughout the field and make possible the calculation

of forces on the propeller produced by the perturbations.

The analysis is restricted throughout to the study of

incompressible, inviscid flow. The purpose is further

to be accomplished by an experimental wind tunnel program

in which the reactive force of the propeller and the

velocity pattern at various locations in the field is

measured.

Because of the many variables involved in a study

such as this, the number of configurations and operating

conditions must be limited. The study is first limited

to the consideration of two control surfaces, 180 degrees

apart, which are both deflected the same amount in a given

sideward direction. Mathematically this means that in the

circumferential direction a cosine ( a zero degree circum-

ferential angle corresponds to the location of one control

surface) type distribution of the tangential component of

velocity disturbance is considered. Also, with regard to

the configuration itself, the propeller and control surfaces

are limited to the same hub and tip radius. The number of

blades is, however, varied to include 2, 5, and 10-bladed
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configurations. The final configuration variable results

from the consideration of different spacing distances

between control surfaces and propeller. Three spacing

distances of 2, 5, and 8 inches are considered.

Although, in the problem of practical interest, the

control surfaces and the propeller operate in the radially

varying viscous wake of the body, the present study is

restricted to those cases with a uniform "primary"

velocity. The advance ratio (ratio of forward velocity

to the rotational velocity) of the propeller is variable

and is varied in the experiments involving propeller force

measurements. In the theoretical analysis and in the

velocity surveys downstream of the propeller, only the

design advance ratio is used. The velocity surveys

downstream of the propeller are, in fact, restricted to

one propeller configuration, one spacing, one advance

ratio, and one angle of attack of the control surfaces.

Variation of any of these in the surveys would have

involved a prohibitive amount of work.
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DEVELOPMENT OF THEORY

Formulation of the Problem

The model that was chosen in the formulation of the

problem is shown in Fig. 1. There is a given "primary"

velocity, Vz, which is in general a function of radius.

The primary flow is assumed to be directed axially,

external to the cylindrical hub. The action of the control

surfaces and the propeller is represented by two actuator

discs, Disc A and Disc B respectively. Disc A serves to

introduce a flow distortion characterized by a tangential

velocity disturbance, vu, which is a function of radius, r,

and of circumferential angle, Q . This disturbance can

represent the action of one or more control surfaces.

Disc B represents the action of the propeller.

Certain characteristics, consistent with propeller theory,

are prescribed for Disc B. These characteristics, in

effect, take the time dependency aspect of the problem

out of consideration.

The flow field is divided into three separate regions:

Region (1) upstream of Disc A; Region (2), between the two

discs. Region (3) downstream of Disc B. The solution of

the problem involves the determination of the velocity

perturbations in all three regions.



7

The approach* that in general is followed in to start

with the equations of motion and continuity equation in

cylindrical coordinates, make the assumption of very

small velocity and pressure disturbances compared with

the primary velocity, and then combine the equations to

produce a single differential equation for p, the pressure

perturbation. A series solution for this equation is

assumed, permitting the derivation of expressions for the

velocity perturbations in all regions. The velocity

perturbations are obtained from these expressions by proper

choice of boundary and matching conditions at the discs.

Solution of Pressure Equation

The equations of motion and continuity equation in

cylindrical coordinates were used in Appendix A to derive

the following differential equation in pressure

perturbation:

*This approach to the problem was suggested by

Dr. H. Yeh of the University of Pennsylvania.
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From the nature of the problem a solution for Equation (1)

of the following form can be assumed:

~ (2)

When this solution is applied to Equation (1), the

following total differential equation results:

-2 d(I.) -L d 2-

z (3)

For an arbitrarily prescribed Vz - Vz(r) , Equation

(3) can normally be handled only in a numerical way. If,

however, the distribution were given by some power law

such as V (r) - cr( , Equation (3) could be written as:

z

_ .+ 20C) +( (
dr' r 7, r t

If, then, a quantity • is defined by:
* by2

q w•t a5)

Equation (4) can be written as:



2B

SrL. r n.d , ra h",- (6)

which is a Bessel type equation for which the solution is:

Rn= r c Z ( A,,, nr) (7)

Z SU(kmnr) is, in general, a linear combination of

Bessel functions of both kinds. Even though a and oC

are integers, 8. will not generally be an integer. The

solution, therefore, will include a linear combination of

Bessel functions of the first kind with like positive and

negative orders.

If the primary velocity, V , were considered as

uniform, that is:

Vz - constant (8)

Equation (3) would reduce to:

r --- 4- (o kr -M ROM n (9)
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This is simply Bessel's equation for which the solution

is, in general, Z m(kmnr). In other words:

Rmr4 r) Z,(ki'rnr) = JM (ko, ,r)+- t~ Y.(.,r (10)

where:

J*(kanr) - Bessel function of the first kind

Ym(kmnr) - Bessel function of the second kind

unn - A constant depending on m and n

kmn - The characteristic values or Eigenvalues

The problem that has been chosen is the one in which

Vz is considered constant. This corresponds to the case

of a "free-stream" condition as opposed to the case where

the control surfaces and propeller operate in the boundary

layer of a body.

Velocity Perturbations

Having obtained the solution of the pressure pertur-

bation equation, Zquation (1), the component velocity

perturbations, Vr, vu, and vz can be derived. This is

accomplished by first writing Equation (2) for each of

the three regions, substituting into the linearized

equations of motion, and integrating to determine each

of the three component velocity perturbations for each
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region. The details of this derivation and all the

resulting expressions are included in Appendix B. The

velocity perturbations are given by Equations (B-2),

(B-3), and (B-4).

The ability to calculate the velocity perturbations

in all regions becomes one of determining the coefficients

Aun, Bmnt Can, and D.n and certain of the functions of

integration (discussed in a later section) that evolved.

The procedure for finding these unknowns is one of

considering the physics of the problem.

Boundary Conditions

It is necessary to apply a boundary condition first

of all at the hub. The radial component of velocity per-

turbation at the hub must be zero which, upon examination

of Equations (B-2), (B-3), and (B-4), means that the slope

of the Bessel function, ZI(k r), must be zero.a mn

It is not necessary to apply a condition at r a oc.

All the velocity perturbations can be expected to decrease

to zero as r -P0o because the Bessel functions and their

slopes all decrease to zero as r--. o .

It is still necessary to apply a condition at some

outer radius. The tangential component of velocity

perturbation must be zero at such a radius. One would

expect that this would occur at the tip radius
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of the control surfaces. It will be seen later from

velocity survey data that this is not exactly true and

that some radius slightly greater than the tip radius

must be chosen. This condition, whatever the radius,

leads to the stipulation that the Bessel function itself

must be zero at that radius.

The boundary conditions that were just stated permit

the determination of the Eigenvalues for the problem. In

equation form, the two conditions can be written:

Z(k j> Jml(kmrh)+- ten AMr

~,*,~r)=Jo+ ,e Y 40*~~

where r h is the hub radius and r0 is the outer radius.

Solving this set of equations leads to the relation:

-. 4(mnrZ) mX 0,~)= (12)

which can be further altered by recurrence formulae to read:

Y•m (k.% n )[, )1 J ., ( /, ,-r 0 (13)
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By obtaining the correct combinations of values for

the Bessel Functions, the ligenvalues, knn, can be deter-

mined. Knowing the ligenvalues, it is then possible to

obtain from one of the Equations (11), the values of a

For instance:

ým n (14)

Functions of Integration

The functions that resulted from integration when

determining the expressions for the velocity perturbations

can be analyzed and, by virtue of the physical problem

being considered, certain conclusions can be drawn as

to their existence.

In Region (1) one could ordinarily assume that as

Z -0-00o all velocity perturbations would approach zero.

This consideration necessitates that:

(15)

because the rest of the expressions for the velocity

perturbations in Region (1) go to zero as z goes to -o.

In Region (2) the analysis of the additional functions

is more complicated. Consider, first, the function,

g2 (r• ). It can be reasoned that this additional function
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represents that part of the solution that is lost when

a - 0 (See Equations (B-3)). As such, g2 (r, 9ý ) - g2 (r)

would represent the mean "swirl" that is produced by the

control surfaces and is therefore a function only of

radius. For the case of two control surfaces deflected

in the same side direction the net swirl is zero. In

other words, for such a special case,

p (r) = 0 (16)

The function h2 (r,9ý) can in general exist. On the

other hand, when Equations (B-3) are substituted into the

equation of continuity, Equation (A-7), and the boundary

condition, vr = 0 at r - rh, is used it is observed that

f 2 (r, f) must necessarily be zero, regardless of whether

g 2 (r) was zerr or not.

In Region (3) the function g 3 (r,c 0 ) could again

represent the mean swirl leaving the propeller and would,

therefore, be a function only of radius. A mean swirl

would exist if the propeller were a "thrusting propeller",

that is, in the absence of a flow distortion the propeller

were producing a thrust. This function could, therefore,

be specified as a characteristic of the propeller. If

the propeller were a "nonthrusting propeller" g3 (r)

would be zero.
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The function, h3 (r,q9), could in general exist but

would be determined in some manner by the function g 3 (r).

Because of this, it would likewise be a function only of

radius. This is consistent with standard propeller theory

which deals only with circumferentially mean values. The

function, f 3 (rcp), would again have to be zero to satisfy

the continuity equation.

Unknowns

To summarize at this point, one can list the following

as the unknowns of the problem:

"1. Amn 5. h2 (r,q•)

2. Ban 6. g3 (r)

3. Cmn 7. h3 (r)

4. Dmn

The functions listed can also be written in series

form with appropriate coefficients. The coefficients

can then be considered as the unknowns permitting easier

handling of the solution. Several of the unknowns can

be determined directly while the others must be determined

as the unknowns of a set of simultaneous equations. The

seven relations necessary to determine these unknowns are

listed below and discussed in turn in the seven following

sections.
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1. Specification of flow distortion at Disc A

2. Specification of propeller mean swirl

3. Propeller normality condition

4. Continuity at Disc B

5. Continuity at Disc A

6. Relation between tangential velocity perturbations
at Disc A

7. Relation between tangential and axial velocity
perturbations at Disc B.

Specification of Flow Distortion at Disc A. The

distortion introduced by deflected control surfaces is

characterized by the distribution of the tangential

velocity perturbation, vu , immediately downstream of theu2

control surfaces. It is possible to calculate this

perturbation by use of existing wing theories. On the

other hand, since v u is the starting point of the

calculation and can be arbitrarily assigned, it would be

physically more meaningful to actually measure the

distribution of distortion and use that in the calculation.

This is the approach that was followed in this study.

The distribution of v in the circumferential andVu2

radial directions, however determined, constitutes an

input to the problem. What changes occur in all the

component velocity perturbations through the field due
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to the action of the propeller constitutes the output

to the problem.

Having arrived at a distribution of v immediately

behind Disc A, a Fourier-Bessel type analysis can be

made. This is accomplished by first letting:

- n 2 -,,Z r)&e (17)

17Z ,,, 7 kr,,

at the z , -d location, i.e., immediately downstream of

Disc A. The coefficient, Pmn' can then be found by use

of:

P•---. =-I(,,,r),dr (.--. c ()
kro n rr Nw

where Nns is the normalizing factor and is given by:

AjZ i 2 X ( 2
(*,, rý [- rzM h (19)

v u is also given by Equation (B-3) which allows

the writing of the following relation for a single

two-dimensional wave in r and q:

P,=-••&, ••+,,' A •"n (20)
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Since Pan is known, this is simply a relation between

Can and Ban which can be written as:

= , (Cl)

Ban and Cmn are, in general, complex.

Specification of Propeller Mean Swirl. As stated

previously, the function g3 (r) is used to represent the

mean swirl introduced by a thrusting propeller. This

function exists when there is a thrusting propeller

regardless of whether there is a distortion or not.

g 3 (r) can therefore be specified independently of the

rest of the problem and can be defined as:

g,(r) = 2 L,., Z0 (k,.,r) (22)

Knowing g3 (r), the coefficients, Lol, can be determined

in a manner similar to that given by Equation (18), but

without the trigonometric integral included. The

Eigenvalues could be determined with the same boundary

conditions used previously.

In the specification of g3 (r) it is necessary to

resort to propeller theory. Fig. 2 illustrates a typical

velocity diagram for a particular blade section. The
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diagram demonstrates the action of a propeller section at

normal operating conditions in the absence of a flow

distortion.

The following definitions apply:

"wa - Component of induced velocity in the z direction

" t = Component of induced velocity in the circumfer-
ential direction

Ve - Relative velocity at the blade section

(midway between regions 2 and 3)

Vz - Primary velocity or free-stream velocity

x-Relative radius I r

Rp = Propeller Radius

J - Propeller advance ratio (
2n R p

n - Rotational speed (rps)

- Angle of resultant velocity at the propeller

blade section

The numbers 2 and 3 on the diagram in Fig. 2 refer to

conditions immediately upstream and downstream of the

propeller disc respectively. This indicates that the full

value of the tangential component of induced velocity,

2wt, is reached immediately behind the disc. Right at

the blade section half the value or just wt is assumed to

exist.
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On either side of the disc, the axial component of

induced velocity is va. Upstream at - oo the axially

induced velocity is zero. Downstream at + oo the value

has reached 2 wa.

For a specific propeller the function, g 3 (r), can

be given at a particular radius by:

g3 C8 . V-c(23)

where:

- Goldstein averaging factor (function of
r, J, B)

B - Number of blades

c = Section chord length

c1 - Section lift coefficient, = c 1 , the lift
O

coefficient at zero angle of attack, when
the section chord is aligned with Ve.

Propeller Normality Condition. A condition is

available from propeller theory for the determination

of h3 (r). The condition of normality states that the

resultant induced velocity at infinity is normal to the

trailing vortex sheet. In terms of the velocity diagram

in Fig. 2, this means:

2-4- /
Va V (24)

- -.
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Making use of Equations (23) and (24) and dropping higher

order terms:

\7Z 7r 5 3 r) (25)

The axial component of induced velocity is thus given

in terms of the function g3 (r). It is convenient to define

the function, h3 (r), as:

(r) (26)

Because h3 (r) will not vary with a change in axial

distance, this definition does not completely follow

propeller theory. In other words, h3 (r) will not reach

the full value of 2 wa at + 00 . This results from the

linearization process in the problem in which the

perturbations are carried along by the primary velocity,

Vz" It does not appear to be a serious source of concern

in handling the problem because h3 (r) actually drops out

of the problem when later relations are applied.

The function, h3 (r) with the help of Equation (23)

can be written as:

a urr VZ (27)
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As in the case of g3 (r), it can also be put in series form:

where h3 (r) is given by Equation (27) when performing a

numerical analysis.

Continuity at Disc B. Continuity at Disc B means

simply that at x - d:

. = (29)

This relation involves the functions of h3(r) and h2 (r,9).

h3 (r) has already been defined in Equation (28). If the

case of a nondistorted flow is considered, h 2 (r,;V) must

actually be equal to h 3 (r) by virtue of Equation (29).

It is therefore convenient to define h2 (r,90) in the

following manner:

k ,P)=; g ., Z. r) 14t o(v) (30)

Using, now, the vz equations from Equations (B-3) and

(B-4) and employing Equations (28) and (30), continuity at

Disc B yields for a single two-dimensional wave in r and
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Bmn was eliminated in this equation through use of Equation

(21).

Continuity at Disc A. As in the case of Disc B,

continuity can be employed at Disc A so that at z - -d:

"-'j __ 1- 1 ,,"(32)

Again the function h 2 (r,99) is involved. In the case of

nondistorted flow, Equation (32) means that there must

be a function hI(r):

4(r) Z (h, r koe) (33)

It had previously been reasoned that hi(r, 9) was

zero. If the action of the propeller could be more

accurately represented, hi(r, 9 ) would actually be zero.

The action of the propeller with regard to the axially

induced velocity is thus represented as not varying in the

axial direction.

Using the vz equations from Equations (B-2) and (B-3)

and employing Equations (30) and (33), continuity at

Disc A yields for a single wave:
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Again, Ban was eliminated through use of Equation (21).

Relation between Tangential Velocity Perturbations at

Disc A. Consistent with the linear aspects of the problem,

a relation of the following form is needed:

1/4 A + B 4, (35)

Vz
One of the choices that can be made is that A = 0 and

B - 1. In other words:

(36)

vi
This is contrary to the normal concept of an actuator disc

in which the tangential component of velocity changes

discontinuously across the disc. If this relation is

used, the disc location could be thought of more as a

place which is mathematically convenient for specifying a

distortion, but which involves no discontinuous changes.

This might not be the best type of relation to use for

the physical case under consideration, where the tangential

velocity does change abruptly. Equation (36) might best

be used where a distortion is introduced farther upstream

but which is measured at a location corresponding to that

of Disc A.

Another approach that might be considered is derived

by looking at the distribution of induced velocity about
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a wing. The induced velocity at a particular point Is

composed of contributions from both the bound and trailing

vortex systems. If one considered the contribution of a

bound vortex alone, one could write:

-ý - (37)

If, on the other hand, the contribution of the trailing

vortex system is considered alone, the following could

be written:

S = (38)

The w is the normal designation given to the induced

velocity at the wing due to the trailing vortex system.

A value of 2w is induced by this system at infinity.

What occurs in reality is a combination of these two

effects. One could say, for instance:

- - v_ (39)

and

Ur e__a V (40)vz4



26

where vBV is the velocity due to the bound vortex. A

solution of these equations yields:

(41)

Vz-Yz
If the following definition is made:

(42)

then

(,- 2) ~.& = -(43)

There is a question of how Equation (43) would be

used. Actually vu and vu could be measured in lateral

planes just aft and just ahead of the control surfaces.

Further, w at the wing can be related to the lift of the

wing or the distribution of lift along the span. Equation

(43) could then merely be used as a check on the vu2 and

v u measurements.

In any event, the knowledge of two of the variables

w, Vu 2, or vul yields the third. The choice of how this

is done depends upon the circumstances under which the

problem is being solved.

Let it be assumed for the present case that the vul

distribution is known and in related to vu2 through



27

Equation (43). The coefficient Ann can then be determined

directly. From Equation (B-2), v u at z - -d can be

written as:

•; ~"A,, Z k., -k,,, (,%-"=-} 2 A ,o""44
-z o

Ann can then be found in the same manner that pmn was

determined:

A r (k r /i - " 9"

where Nan is defined in Equation (19). For ease in later

application, it is convenient to define a coefficient,

Amn, which is of the same form as Pmn:

A = I'm A (46)

Relation between Tangential and Axial Velocity

Perturbations at Disc B. If a distortion were introduced

by Disc A, the velocity diagram shown in Fig. 2 would be

altered in a manner as represented in Fig. 3. In Fig. 3

part of the altered diagram is superimposed over the

original velocity diagram of Fig. 2. It should be noted

that v in the diagram includes both the induced
z2

velocity wa and an increment of axial velocity due to the
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original disturbance and the reaction of the propeller

to that disturbance. Using this velocity picture as a

basis, a linear relation between vu2 , Vz2, andvu3 of

the following form can be derived:

The derivation of Equation (47) and expressions for

K(r), N(r), and N(r) are given in Appendix C. The case

that will be studied is that of a nonthrusting propeller

which causes the K(i) term in Equation (47) to be zero.

It is also shown by virtue of Equation (C-29), that

whether or not a propeller is thrusting has no effect

on the final results. Terms involving the normal action

of the propeller cancel each other in Equation (47).

For calculating the effects of flow distortions, therefore,

one can always consider the propeller as nonthrusting.

Solution of Unknown Coefficients

Enough relations are now available to determine all

the unknowns that were previously listed. Of those

originally listed h3 (r) and g3 (r) can be determined

independently of the rest of the problem. It was also

assumed that a knowledge of v Just upstream of Disc A

was available so that the coefficient Ann could be
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determined directly. This left to be determined the

coefficients Ban , Cmn, D.n, and Omn. The coefficient

0., replaces the unknown function h 2 (r,qP).

The first of the equations available for the

solution is Equation (21). This has already been used

in eliminating Ban from succeeding equations. Two of

remaining three equations that are necessary are

Equations (31) and (34). The third equation is

Equation (47). No simple relation between coefficients

can be derived from Equation (47), however. Because

the K(r), M(r), and N(r) terms are not constants but

vary with radius, it is necessary to define additional

coefficients which further complicate the solution.

The details of getting Equation (47) in a suitable form

for solution is presented in Appendix D. The equation

is solved for the coefficient, Cmn'

The remaining unknown, Ban, Osn, and Dan' can be

found in turn by substituting the values of Can in

Equations (21), (34), and (31) respectively.

Equation (21), after substituting for Can in the

form of Equation (D-11), will read:

= C2A-7 at,~ d
k~' ~ ~ ~ ~d)(48)
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If similar substitutions are made in Equations (34) and

(31), the following equations will result:

o,.2E(= + F.,,-2FS

nd r d n n u o D(50)

S and U are defined in Equation (D-5).
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MEASUREMENT OF FLOW DISTORTION

Experimental Setup

The flow distortion was determined experimentally in

this investigation in the subsonic wind tunnel at the

Garfield Thomas Water Tunnel of the Ordnance Research

Laboratory. This tunnel 1 2 has an octagonal test section

with a nominal diameter of 48 inches.

The same basic model was used for both the measurement

of the flow distortion and for the reaction of the

propeller to the flow distortion. However, in the

distortion measurements, there was no neod to have a

propeller or force sensing instrumentation. Therefore

an "interim" model was used.

The essential components of the interim model include

an 8-inch diameter housing supported by a streamlined strut,

a 5-inch diameter cylindrical sleeve (hub), two control

surfaces, a wood nose section, and a supporting stationary

shaft. Views of the model can be seen in Figs. 4 and 5.

The 8-inch diameter housing is, in reality, a torpedo

model with its upstream and downstream ends reversed.

Normally it will house the electric motors to turn the

propellers. In this setup, it is used primarily to
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support the rest of the model. In the final model, it

is also used to house a twenty horsepower motor.

The control surfaces are mounted on the upstream end

of the model. The surfaces are, therefore, operating in a

uniform flow or free-stream condition. The control

surfaces are independently moveable over a range of

approximately plus or minus six degrees.

The design of the control surfaces consists of a

tapered planform in which the chord length varies

linearly from 4.66 inches at the hub to 3.00 inches

at the tip. The section shapes are standard NACA 65-009

airfoils all along the span. This designation indicates

a symmetrical section with a maximum thickness-to-chord

ratio of 0.09.

Instrumentation

The measurement of the velocity components was

accomplished by use of a three-dimensional pitot-type

probe. The probe is shown in Figs. 4 and 5. It is a

commercially available instrument, manufactured by the

United Sensor and Control Corporation, Glastonbury,

Connecticut and is designated as a DC-120 type probe.

The probe incorporates five pressure holes, the

center hole giving a measure of total head. Two

horizontally orientated holes indicate variations in

yaw angle and two vertically orientated holes indicate
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variations in pitch angle. The pressure holes are

connected by tubes to a manometer board.

The probe is mounted on a traversing unit, shown

in Fig. 5, which permits orientation of the probe in

the vertical and lateral directions for a particular

lateral plane. The traversing device also permits the

changing of the pitch orientation of the probe. A dial

with a vernier device makes it possible to read changes

in pitch angle to about 0.1 degree.

Calibration curves were available with the probe

but were found inadequate for the accuracy of measurements

that were needed. Calibration of the probe was, therefore,

performed in the wind tunnel, taking into account the

change in yaw angle indication due to the bending of the

probe shaft.

The procedure for using the probe is to orientate

the probe in the desired location, change the pitch of

the probe until the manometer readings associated with

pitch are balanced, and then read the pitch angle and

the level of the rest of the manometer tubes. Calibration

curves relate the manometer readings to the yaw angle and

to the resultant velocity. With the resultant velocity,

the yaw angle, and the pitch angle known, the components

of velocity in the radial, circumferential, and axial

directions can be calculated. The manometer readings of
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the probe were referenced to a tunnel pitot tube so that

results are given as velocity ratios.

Experimental Procedure

The purpose in making the velocity surveys was to

learn the velocity perturbations in planes just upstream

and downstream of the control surfaces and from these to

determine the coefficients Ann and Pmn in the problem.

Two such planes were chosen and one quadrant thoroughly

surveyed in each plane. Points in neighboring quadrants

were checked to make sure of symmetry. The assumption was

mads that the distribution of the disturbance would have

the same form in each quadrant. Except for some slight

variations near the control surfaces, which were within

the accuracy of the measurements, this assumption was

experimentally verified.

Because of the physical limitations on positioning the

probe, it was necessary to take measurements with the

control surface placed first in a vertical plane and then

rotated 90 degrees to lie in a horizontal plane. This

allowed a full coverage of points in a single quadrant.

The proximity of the probe to the trailing edge of

the control surface gave rise to effects traceable to

the finite shape of the airfoil sections. The wedge

formed by the trailing edge of each section influences

the flow in such a way that it produces tangential
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components of velocity in opposite directions on either

side of the trailing edge. This means that there is a

rapid change in the tangential components when passing

circuuferentially by the trailing edge. The same effect

occurs at the leading edge. This effect occurs whether

or not the surfaces are deflected. At angular locations

closer to the trailing edge, part of the effect might be

traceable to the viscous wake shed by the surface.

Immediately downstream of the trailing edge the low

velocity region in the wake is replenished by fluid from

outside the wake, thereby producing tangential components

in opposite directions on either side of the trailing edge.

Because the interest is solely in the perturbations

caused by the deflection of the control surfaces, it

seemed advisable to subtract the effects of finite shape

from the measurements. It is also likely in measurements

of this type that other extraneous velocity perturbations

are already present even when the control surfaces are at

zero angle of attack. The procedure that was followed was

to take measurements with the control surfaces deflected

and at zero angle and subtract the readings to obtain the

net perturbations.

Experimental Results

Because of the great amount of time necessary to

make the velocity surveys, measurements were made for
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only the 0-degree and 3-degree angle of attack cases.

These were performed at a nominal tunnel speed of 100

feet per second. A plot of typical experimental results

are shown in Fig. 6. This shows the discontinuous change

in tangential velocity that occurs when traversing past

the trailing edge of the control surface. One can also

note the increment of velocity that exists between the

0-degree and 3-degree cases. This increment stays roughly

the same for corresponding points on either side of the

trailing edge.

Because the tangential components of velocity are

the ones that constitute the input to the problem, these

data were plotted and cross-plotted several times to

insure smoothness of the distribution curves in both the

radial and tangential directions. The resulting curves

of vu and vU are shown in Figs. 7 and 8 respectively.

Figs. 9, 10, 11, and 12 are plots of the experimentally

measured values of vr vr21, vz , and vz2 respectively.



CHAPTZR IV

MEASUREMENT OF PROPELLER REACTION
TO A FLOW DISTORTION

Experimental Setup

The measurement of the reacticn of a propeller to

a distorted inflow consisted in measuring the reactive

force of the propeller and in surveying the velocity

field leaving the propeller. Views of the model used

for these tests are shown in Figs. 13 and 14. The changes

in the model from the interim model included addition of

a propeller, variable spacing between the propeller and

control surfaces, an electric motor within the main

housing to power the propeller, and instrumentation to

measure the side force of the control surfaces and the

reactive force of the propeller.

Propeller Design

The propeller was designed to have different numbers

of blades (2, 5, and 10). This is possible because the

propeller fabrication process at the Garfield Thomas

Water Tunnel is one of making individual blades and

mounting them on a hub. Hub blanks can be inserted when

blades are removed.
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The hub and tip diameters of the propeller are the

same as those of the control surfaces. The chord length

and thickness ratios of the blades were varied linearly

from values of 3.0 inches and .0900 at the hub to 3.25

inches and .0775 at the tip. Symmetrical NACA Series 16

airfoils were used throughout.

The advance ratio (J = V z/nD) of the propeller was

chosen to be 2.0. This is a representative advance ratio

for the propulsion of underwater bodies.

Instrumentation

The force measurements for both the control surfaces

and propeller were done with electrical strain gages.

Sketches of the main features of the strain-gaged

assemblies are shown in Fig. 15. The strain gages in

this application are used as transducers rather than purely

strain measuring devices. Calibration was performed

statically with known weights. It was necessary, because

of the very small forces that were measured and the drift

in the readings, to calibrate before and after each run.

The readings were taken on a Leeds and Northrup

Speedomax recorder. The rpm of the propeller was

measured with a Hewlett Packard electronic counter.

The same three-dimensional probe used with the interim

model was used for the velocity surveys downstream of the

propeller.
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Experimental Procedure

The force measurements were made over a wide range of

conditions. The number of blades was varied to include

2, 5, and 10 blades. For each one of these propellers the

spacing between propeller and control surfaces (w2d) was
2d

varied over values of the ratio, 2-, of 0.267, 0.667,

and 1.067. These distances were measured approximately

from the trailing edge of the control surface at the hub

to the leading edge of the propeller.

The advance ratio of the propeller and the angle of

attack of the control surfaces were also varied. Angles

of O, +3, +6, and -3 degrees were used. The procedure

followed was to zero the recorder at the 0 angle of attack,

change the angle quickly to one of the three angles

mentioned, take the reading, and then return to a zero

angle to see if there was a return to a zero reading.

This technique was again necessary because of the very

small forces and the drift in the readings and was made

possible by a simple angle of attack changing device. This

device consisted simply of an internal yoke connecting the

two control surfaces which was held at prescribed positions

by detents. By pushing or pulling on this yoke with a long

rod, the position could be changed. The rod was inserted

through a small hole in the wind tunnel and then through
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another hole in the wood nose of the model. This latter

hole is visible in Fig. 14.

The velocity surveys were taken in a plane immediately

behind the propeller and in one about nine inches downstream

of the propeller. The same procedure used in the previous

surveys was followed here.

Force Measurement Results

For convenience and ease of handling the forces

measured for the propeller and control surfaces were

reduced to nondimensional coefficient form. The type of

coefficient used is defined by:

F
Cf (51)

where:

F = a force

t mass density of air

Dp - propeller diameter

Coefficients defined in this manner for the side

furce of the control surfaces, side force of the propeller,

and vertical force of the propeller are designated Ccs,

CH, and CV respectively. The side force direction is taken

as perpendicular to the longitudinal plane in which the

control surfaces lie. The vertical force direction is
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parallel to this plane. Plots of these coefficients for

varying conditions of numbers of blades, spacings, advance

ratios, and control surface angle of attack are shown in

Figs. 16 through 24. It will be observed that the variation

with advance ratio is very small. The greatest changes

appear to occur with the vertical force coefficient of the

propeller.

To study how the force coefficients vary with angle

of attack of the control surfaces, plots were made for a

constant value of advance ratio. The advance ratio chosen

for these plots is the design advance ratio, J a 2.0.

The resulting curves are seen in Figs. 25 through 33.

They appear to be essentially linear. Because of the

linearity, comparisons can be made at any angle of attack.

An angle of +3 degrees was chosen and the coefficients

plotted versus spacing distance in Fig. 34. Practically

no difference in coefficients is noticed with spacing

distance.

For any spacing then a comparison between numbers of

blades can be made. This was done and Is shown in Fig. 35.

One of the curves shows the percentage of side force

cancellation by the propeller for different numbers of

blades.
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Results of Velocity Survey

The results of the velocity surveys are helpful in

giving some idea of how much of the original distortion

passes through the propeller. Figs. 36 and 37 (for -

0.133 and 1.200) show how the tangential disturbance

resulting from a 3 degree control surface angle has

2dchanged for the lO-bladed, 0.267 spacing case.

No attempt was made to survey downstream of the propeller

for any other cases. Because of the danger of the probe

being struck by the propeller, no surveys were made just

upstream of the propeller.



CHAPTER V

THEORETICAL COMPUTATIONS

Eigenvalue Calculations

The computations proceeded along the lines already

discussed in Chapter II. It was necessary to go to

machine computation because of the difficulty and length

of the calculations. For this purpose the IBM 1620

computer at the Garfield Thomas Water Tunnel was used

in developing and proving the programs. The IBM 7074

computer of the Pennsylvania State University Computer

Center was used for the bulk of the actual computations.

Details of how certain types of calculations were

handled are presented in Appendix E. Detailed Fortran

programs and flow charts for all computations performed

in this investigation are available in Reference 20.

The first computations undertaken were of the

ligenvalues. These were found by use of Equation (12).

The procedure that was necessary was to choose successive

values of kmn until Equation (12) was satisfied. This

procedure was eventually incorporated in a computer program

which included a Bessel function subroutine. The ( Un

constants were calculated from Equation (14).
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The choice of how many orders of Bessel functions

and how many Eigenvalues within an order resulted from

examination of the Ann and Pan calculations. The Amn

and Pmn values were calculated from Equations (45) and

(18) respectively. The convergence of Equation (17) was

rather slow with the distribution in Fig. 8 and a choice

of 16 orders and 16 Eigenvalues for each order was made.

The v series of Equation (B-2) converged more rapidly.

The distributions that resulted from the chosen number of

terms are shown in Figs. 40 and 43. The calculated vu

values, although not so close to the measured distribution

as the v case, were considered sufficiently close to be

meaningful.

Propeller Properties

Before calculating Cmn from Equation D-9, the

functions M(r) and N(r) had to be calculated. The

properties of the propeller described in Chapter IV

were used for this purpose. The slopes of the lift

curves as well as the AT values for the 2 and 5-bladed

propellers were obtained from Reference 12. The

values for the lO-bladed case were calculated as the more

approximate Prandtl tip loss factor:

[ exn 5 - (52)
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In each case, corrections for finite hub effects13 were

applied to the r values.

The resulting distributions of M(r) and N(r) are

shown in Figs. 38 and 39. The summations based on M(r)

and N(r) necessary for the C., calculations are given in

Table I. Twenty terms were used in these summations.

TABLE I

Summation Values for A/, ,

B

2 .4342 .2611 .4632
5 .8351 .0584 .4632

10 1.0662 -. 0886 .4632

Computing Accuracy

The computation of the Can coefficients and the

other unknown coefficients introduced some questions of

accuracy. The determination of E and F (Equations (D-12)

and (D-13) involved the subtraction or addition of some

very large numbers. The large numbers resulted from the

large values of the exponentials when the spacing distance

and the order of the Bessel functions became large. The

difficulties were felt in the determination of both the

real and imaginary parts of Cmn and consequently in the
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other coefficients which depend upon Can Values of I

and F, when obtained directly from Equation (D-9), were

often extremely high. To alleviate this problem Equations

(D-12) and (D-13) were rewritten. In the case of Equation

(D-12) some of the very large terms cancelled. Equation

(D-13) was put in such a form that, for exponentials

beyond a certain size, the expression could be simplified.

The manner in which these equations were altered appears

in Appendix F. Iv Appendix F it is shown that for

sufficiently high values of C kmnd the term F reduces to:

F -* (53)

When Equation (53) is substituted in Equations (48),

(49), and (50) the expressions for Ban, Omn, and Dan

become:

p_ /
'= (56)I•)•t'"Q



47

By examination the value of kand beyond which to

use Equations (53), (54), (55) and (56) was chosen to

be 8.5.

Calculation of Velocity Perturbations

By substituting the appropriate coefficients in the

series list.id in Appendix B, the velocity perturbations

at any point can be computed. The real part of the

combination of coefficient and • in each series is

the part that has physical significance.

The velocity perturbations were calculated for a

series of conditions to determine the effects of numbers

of blades and spacing distance. For the shortest spacing
distnce 2d

distance (-id = 0.267) calculations were made for 2, 5 and
Jr-p

10-bladed propellers. For the 10-bladed propeller

calculations,spacing distances corresponding to = 0.267,

0.667, and 1.067 were performed. This gave a total of

five distinct sets of conditions.

The computations of the perturbations in Region (1)

and just downstream of Disc A in Region (2) would be the

same regardless of what set of conditions was being

considered if it is assumed that the inputs are unchanged.

Calculation of the perturbations at these locations was

therefore performed only once. The results of these

calculations are shown in Figs. 40 through 44.
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Comparison of the calculated tangential components

just upstream and just downstream of the control surfaces

with the measured values were already made and assumed to

be adequate. The vr and v2 calculations at the same

locations show how well these components can be represented

on the basis of coefficients derived from just the vu

distributions. The vr and v2  computed distributions

just in front of Disc A are also seen to compare reasonably

well with the measured values. Just downstream of Disc A,

however, the calculated v values are found to be

considerably at variance with those measured in the region

of the tip radius. The measured v z values in the same

plane do check fairly well with the predicted except at

points very close to the trailing vortex from the control

surface tip.

The calculated effect of the propeller on the

distortions are shown in Figs. 45 through 49 for the

case of d - 1.0 inch and B - 10. The predicted violent

radial perturbations are still present just upstream of

the propeller but are radically reduced downstream of the

propeller. In all cases calculated continuity at both

discs was maintained. For this reason v 2 and v z are

always plotted as being the same. Angular locations
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other than in the first quadrant are shown for this set

of conditions to demonstrate the manner in which the

disturbances have ceased to follow strictly cosine or

sine type distributions.

Distributions at the propeller for all the remaining

sets of conditions are shown in Figs. 50 through 65. The

important observation to be made is the apparent dis-

ordered distributions that are present with spacings

larger than d - 1.0 inches.

Prediction of the velocity perturbations nine inches

upstream of the control surfaces and nine inches down-

stream of the propeller were made. In both cases the

results were indistinguishable from zero and were

therefore not reported.

Calculation of Propeller Forces

With a knowledge of the velocity components before

and after the propeller, the torque force at each radial

location of the propeller can be determined. By taking

the component of this force in the side and vertical

directions an estimate of side and pitching force can

be made.

From standard propeller theory a torque force

coefficient defined as:

(57)
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can be expressed in terms of the velocity perturbations at

Disc B:

Q (58)

One can perform this integration at various angular

locations and then find the mean component of force in

both the side and vertical directions by use of:

2 7f

2 ~ -7,S r (5)

and

= / T 7c.f (60)

The results of this type of calculation are shown in

Table II. The coefficients are the same as those used for

the experimental measurements.

TABLE II

Calculated Force Coefficients

""d B CH CV

0.267 10 - .0362 + .0264
0.267 5 - .0122 - .0031
0.267 2 0.0 0.0
0.667 10 + .0082 0.0
1.067 10 + .0085 - .0143
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The CH value for the d - 1.0, B = 10 case is high

compared to experiment. For the 5-bladed propeller C1

is close to measured and for the 2-bladed propeller it

is low. The increase of CH with numbers of blades is

therefore greater than shown by experiment. The variation

with numbers of blades of predicted and experimental CH

and C V values are compared in Fig. 66.

The magnitude of C V for the first listed case also

appears to be very high. The CH and CV values for the

larger spacings and the plots from which they were derived

generally appear unreliable.



CHAPTER VI

DISCUSSION OF RESULTS AND CONCLUSIONS

Experimental Results

The experimental phase of the investigation had the

dual goal of measuring the disturbed flow and of measuring

the force reaction to the disturbed flow. These goals

were accomplished. The first phase of the distortion

measurements was primarily to determine the disturbance

to be used as the input to the theoretical solution.

The second phase was directed toward measuring the flow

perturbations after having passed through the propeller.

The distribution of the v perturbation measured

immediately downstream of the propeller (Fig. 36) shows

that the general shape of the original disturbance is

maintained. The magnitude is less and as such is a

measure of the force reaction of the propeller. The

perturbation still was present nine inches farther down-

stream although again furtner diminished (Fig. 37).

The force measurements gave a quantitative picture

of how the effectiveness of the control surfaces is

reduced. As one would suppose, the maximum reaction

occurs with the 10-bladed propeller. The cancellation

was about 34 per cent for this case. From the shape of
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this curve in Fig. 35, the variation with numbers of blades

has leveled at about 10 blades, indicating that it

represents close to the maximum reaction.

The force measurements show further that the

reaction is linear over a range of angles to 6 degrees.

At some higher angle this linearity must cease to exist,

but in the linear range the percentage of force

cancellation is the same. The comparatively constant

reaction with changes in advance ratio show that the

theoretical result that the reaction of a thrusting or

nonthrusting propeller is the same is reasonably accurate.

The force measurements showed practically no variation

with the spacings investigated.

Theoretical Results

A measure of the theoretical development can first

be made in how well the original disturbed flow can be

represented. The vu disturbances before and after the

control surfaces were represented reasonably well by

their respective series. The calculated v downstreamVr2

of the control surface, however, varied considerably

from the measured values. A possible explanation for

this lies in the difference between a real flow vortex

with viscous effects and a potential vortex represented

only approximately by a truncated series. Mathematically
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the source of trouble is traceable to the slopes of the

Bessel functions. Because of the abrupt change in vu2

at the tip region of the control surfaces the cumulative

effect of the Bessel function slopes is very strong.

The effect of the propeller on the flow just upstream

of the propeller is an interesting one. As seen in Figs.

45, 50, and 55, the vortex near the tip region apparently

reverses. The tangential perturbation is generally

reduced as it approaches the propeller. The greatest

reduction, however, occurs with a smaller number of blades.

In Fig. 48, the tangential perturbation is seen to

be generally negative after passing through the propeller.

When the distortion feeding into the propeller is

generally positive, it does not seem likely that the

tangential flow leaving would be negative. This is an

indication that the propeller action is not properly

represented either through the original factors M(r) and

N(r) or through an insufficient number of terms in the

series representing these factors. The convergence of

these series was not very complete after 20 terms.

The breakdown of the perturbation predictions for

larger spacings probably has its origin in the accuracy

problem described in Chapter V and Appendix E. Although

the accuracy was improved greatly by simplifying the
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coefficient equations beyond a certain value of knd, the

choice of what k nd to use as the dividing point may be

fairly critical. The effect of the accuracy problem on

the predictions of the force reactions follows logically.

The force coefficients predicted for the larger spacings

do not appear to make such sense.

The prediction for the 2 = 0.267 spacing, lO-bladed

case is apparently high and is probably traceable to the

arguments already brought forth with respect to 1(r) and

N(r). Although the predicted 5-bladed case is close to

the measured value, the 2-bladed prediction is too low.

The theoretical trend of the variation of force coefficient

with blade number therefore has a greater slope than the

experimental one.

There is a rapid decay of the predicted perturbations

with distance away from the discs, as shown by the fact

that no measurable values were computed at distances nine

inches away. This is contrary to the expsripental findings

which show that the perturbations do exist at distances

such as that.

Conclusions

In the light of the discussion of results the following

conclusions can be made:

1. The experimental results give a ver7 good picture

of the force cancellation by a propeller.
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2. The theoretical method that was developed

appears to be a useable one.

3. The theory in being extended to its limits when

being applied to a case with a strong vortex

present.

4. The theoretical approach can probably be

extended easily to the case of a ducted

rotating device.

5. The agreement of theory with experiment is

sufficiently good to warrant further studies

concerned chiefly with improving the accuracy

of predictions.

Suggestions for Further Research

The following suggestions are made with regard to

future work in this general area.

1. Work with existing test setup should be

extended to the cases of propellers with

different diameters than the control surfaces.

This very practical type study can be done

simply by cutting down the tips of the

existing blades.

2. Ways to improve the computing accuracy of a

study such as this should be undertaken.
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3. An extension of the theory to the case of

control surfaces and propellers immersed in

the boundary layer of a body should be

pursued.

4. An extension of this theoretical approach

to pumps and compressors should be tried.
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APPENDIX A

DERIVATION OF PRESSURE EQUATION

The equations of notion in cylindrical coordinates are:

f-v LVrIv2 -v Žr

a~r r r - (A-i

Likewise in cylindrical coordinates, the continuity

equation can be written as

r V~rV ) + - LVwL +. ýVz o (A-2)r r

The following are assumed

S= ., )q (p _z)

V¼ =
(A-3)

p (r(rzz)
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where the disturbance velocities, Vr, vu, and vz and

the disturbance pressure p are very small compared to

the primary velocity Vz - Vz(r). When used in

Equations (A-l) the following set of linear differential

equations result:

Z- r(A-4)

V (A-5)

The continuity equation also becomes:

Solving for in Equation (A-7) and substituting

in Equation (A-6):
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Differentiating Equation (A-8) with respect to z yields:

___ - - Fa a Vr* - (A9

az dir 7FI'? r,ýz -al 32 z

Differentiating Equation (A-4) with respect to r and

Equation (A-5) with respect to 9 and substituting the

results and Equation (A-4) in Equation (A-9) produces,

after proper grouping of terms:

-a r(A-10)yz ý



APPENDIX B

DERIVATION OF VELOCITY PERTURBATION EQUATIONS

The equations for pressure perturbation can be written,

as in Equation (2), for each of the three regions:

I

.#2 n.7 r,,,,Z,,,(B-i)

These expressions for p can be substituted in the

linearized equations of motion and, upon integration,

equations for the velocity perturbations in each region

can be derived:

Region (1)

VZ M. An 7
A, , ZVIZ,, r c
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Region (2)

Z,• r) kwnz (f- )n

c, (,IV

CZ r)
c~ -kn 

3

m z

Region (3)

vz r

no -2r.,~k, r)C*ti /( .7 3(~
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The definition for X (xanr), where it occurs, is:

d r,)

The functions, ((r,) ý(/V), and A(,) are a result

of the integrations. The evaluation of these functions is

dependent upon the physical problem and is discussed in

another section.

The coefficient, Amnn used in these equations is

defined as:

______(B-6)

The coefficients, Bmn, Cmn, and Dan, are defined in the

same manner with respect to ban , cn, and dmn

respectively.



APPENDIX C

DERIVATION OF RELATION BETWEEN TANGENTIAL AND
AXIAL VELOCITY PERTURBATIONS AT DISC B

Referring to Fig. 3, a relation similar to Equation

(23) can be written:

/C

/ r (C-i)

where the primes indicate conditions with a distortion

present. Let it be assumed that the chord of the section

is set at the angle 6. C1 is then given by:

C' C- 0° L' •.( - V) -,
,j : (C-2)

where C1  is again the lift coefficient at zero angle of
0

attack and a is the slope of the section lift curve.
The angle 0 is given by:

A~r (C-3)

and the angle W is given by:

____-_____"_"_ (C-4)

VZ •_Z
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To be consistent with the linearized aspects of

the problem these expressions for angle must also be

linearized. Consider first the angle, S. This can be

represented by:

6 = (C-5)

A reasonable range of would be from 0.3 to

3.0. Therefore, y would have a corresponding range of

approximately 3.0 --p 0.3. Because it could be reasonably

expected that values of y would be both greater than and

less than 1.0 it would be necessary to consider two series

for • . For y2 << 1:

t4~~~ 7 -3~ (C-6)

For y2  1 1

- Z/ -- 3 - ------ (C-7)

The results of linearizing either of these expressions

is the same so only details of working with Equation (C-6)

will be discussed.
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Let the following substitutions be made for ease

of handling:

'b (r) (C-8)

Therefore:

16. CL

�3 (/-9),+-

"- I (I / •- 2-

Substituting these approximations back into Equation (C-6):

3 ,l A• A AF " (-o

A ~A3 Ar (C-10)

or

= ran" A (C-11)
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Taking nowthe series fA-ý + lotJ AL
The series can then be put in the following succeeding

forms:

I = ¥-Ž- -t- .,.-.

Y (C-12)

Finally:

e = 411'(~ t/h'r) ?~ #g~~rjl __(C-13)

Using the same type of derivation the expression for

will be:

- / (C.-14)
(77Vwz) 9 J
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and from these:

41) X-'•) • *•

O --J(c-15)

From the velocity diagram in Fig. 3 the following

expression for Ve is derived:

To linearize Equation (C-16) let:

-;z a -=0

Vz

2Ž A(C-17)

so that

A (C-18)
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Dropping higher order terms within the brackets:

ý/Z = 1 t a + C-19)

which can be rewritten:

S2( +(C-20)

Using the binomial expansion and dropping higher order

terms:

V(/+A')' ,A2) (C-21)

When Equations (C-17) are substituted and terms

rearranged the final linearized equation for Ve is:

+
+ [ (C-22)

If substitutions are now made in Equation (C-2) and

then in Equation (C-i), the following equation results

after further dropping of higher order terms:
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L ( A /ri- +• _ _ _ _ _ _ _ _ _ --_3

(C-23)

The change in the tangential component of velocity

across Disc B is represented by 2IC46C. One can there-

fore write:

- - - -_- (C-24)

When Equation (C-23) is substituted in Equation (C-24)

vu3 is given in the following form:

"• -K Mr -t ()•_ - No'r) •" (C-25)
-viz.
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where:

2 c (V)A& a
c3r ( r):ej (C-26)('1." L Y

FI -7- ,7-1•
+' 2]r'L 

____

It will be observed that when the propeller is a

nonthrusting propeller the value of K(r) is zero. 1(r)

and N(r) will have values regardless of the propeller

design. If one goes through the detailed substitutions,
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it will be observed that when no distortion is present,

Equation (C-25) reduces to:

h< (C 29)

77- V2
This is a check on the correctness of the relation.



APPENDIX D

SOLUTION OF UNKNOWN COEFFICIENT, Can

As stated previously the propeller need be considered

only as a non-thrusting propeller. Equation (44) can then

be written as:

vz vz vz
with the 93 (r) and that part of h 2 (r,90) equivalent to

h3 (r) dropped from the expressions for vu3 and vz9..

Substituting from Equations (B-3) and (B-4) into

Equation (D-l):

I~ ~~z r).. C,(,•

'07 ~ P Z." )mom

-•r.) -z e,,,z, '..,)"',"'

r mD-2 I (D-2)
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For a single wave in r and 90the following would then be

true:

÷N~r) l -k•.

4- --ý C(D-i)

It is probably most convenient to substitute into this

equation so that it is put in terms of one unknown, Can'

Equation (21) can be used for Bnn, Equation (31) for

Dan, and Equation (34) for Oan. When these substitutions

are made, the following equation results:

/hr

z M4(r) c.( kid ),4(L -k 4 '

AIMA r _C CV

(D-4)
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By combining terms and defining the following:

s = (/ ý.2 . ,-.g -,,

T = ( ov*"n-C/) -- * ,,M d

L2 - ( " ) (D-5)

Equation (D-4) can be altered to read:

LMc' [-L] 5~ + IV~) T 7 JC
r r T

• Functions of r must be eliminated in Equation (D-6)

so that Cmn will be independent of r. To do this the

following are assumed:

/ite,) = • ,, z, (Q ,,)
r)

./K' r)
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in which case:

,o•#l r2(rr rMle)Z(e/r r)dr

/ (D-8)
T/2 : 2 a 4 2 / z -r

The Eigenvalues could be the same as those calculated for
/

the first order when finding the Pnand An coefficients.

Substituting Equations (D-7) into Equation (D-6)

gG

and replacing Ao n by fin as defined by Equation (46),

leads to:

f5~ 0C [ ZAl]

Alt~~ + el e'm
Lp.

k(D-9)
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Consider Equation (D-9) of the form:

(A ~ C,~= (D-10)

Cmn can then be written:

C. = E - F (D-11)

where:

A - 8 D 
(D-12)

and

A ý -S k'(D-13)



APPZNDIX Z

COMPUTAT IONAL PROCIDURIS

Bessel Function Subroutine

To effectively program the theoretical calculations

on the computer, a Bessel function subroutine was necessary.

Because the range of arguments was so large this sub-

routine would have to switch from the regular expansions

to the asymptotic expansions at some prescribed argument.

Finally the subroutine would have to be able to compute

the Bessel functions for any order.

The regular expansions for Bessel functions of both

kinds are given as:

J• (z) = (_1-1)• )•*

and

o < s (+ J- +

S) S+s)- i+ -+- L (1-2)

where ( Y 0.577216.
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These expansions were programmed to include terms up

to the point where the absolute value of additional terms

was less than 0.000001. With this accuracy it was

determined that these expansions were useable up to an

argument of 7.0. Beyond that point asymptotic expansions

were adequate. The asymptotic expansions are given as:

where-

~ (1-5)

_______ (-/)(#A-9) (,,v -4%01-6)
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9 (z --- (1-7)

0= Z (1-8)

The specific procedure followed was to compute the

Bessel functions of both kinds by the expansion commen-

surate with the argument for orders of 0 and 1. The

following recurrence formulae were then used to successively

increase the order of the Bessel functions to the one

desired:

jot, (x 2•/•)d ) - •/,() (1-9)

Integrations

All integrations in the computational procedure were

performed on the basis of the trapezoidal rule. In other

words for a definite integral of the type:
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the integration was interpreted geometrically as an area.

The area was taken as the sum of n trapezoids so that:

J y /T ?ý df-T ý-~ (1-12)

or

Equation (1-13) implies a constant Z or a series of

trapezoids of equal height. All integratIons that were

performed were for constant d values that were sufficiently

small to insure an accurate summation.

Other Computations

The rest of the computations that were performed were

of a straightforward nature. The only deviations that

arose were with large exponential values. This aspect of

the computations is discussed separately in Appendix F.



APPENDIX F

REDUCTION OF Cmn EQUATION

For reasons of handling ease the following definitions

are made:

0-

In Equation (D-12) and AC and BD terms in the numerator

can be written as follows:

A C S xoc 0

(F-2)

-C S kmr 7  _ Sdc

M4C -
(F-3)
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A number of like terms cancel when BD is subtracted from

AC and upon substituting for S, T, and U from Equations (D-5):

-31

/AC -8D-

2kmnd (F-4)

The C term outside the parentheses will cancel with

a similar term in the denominator of Equation (D-12) so

that at the higher k nd values the level of the AC - BD termmn kund

is governed very much by e and not by the extremely

high values resulting from S, T, and U.

In the case of Equation 1D-13) AD + BC does not

provide any fortunate term cancellation. However, when

considering higher values of kmnd, certain terms become

so large compared to others that they can be considered

alone.

The AD and BC terms can be expanded to the following

form.

AD C {krand(M 2tp - (7.5)

Bc C A2"K F(2L

- (F-6)
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In both Equation (F-5) and Equation (F-6) terms multiplied

by exponentials smaller than C"'• were dropped. In

fact when kmnd is large enough, terms multiplied by

will have no significance compared to terms

multiplied by . AD + BC could then finally be

written as:

AD÷BC = C o L o -+ - (A t kr)

A similar reduction of terms can be performed for the

denominator so that

Az '/ E =t 2 / 2

A (1-8)

This leads finally to the expression:

(F-9)

when • is sufficiently large.
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